Modifier and Type | Field and Description |
---|---|
private Population |
AbstractGeneticAlgorithm.population |
Modifier and Type | Method and Description |
---|---|
private double[] |
GeneticAlgorithmDcmaEs.myEvaluate(Population population) |
protected void |
AbstractGeneticAlgorithm.scaleIndividualRates(Population population)
Deprecated.
|
Modifier and Type | Field and Description |
---|---|
private Population |
AbstractPsdEvaluator.currentPopulation |
Modifier and Type | Method and Description |
---|---|
Population |
AbstractPsdEvaluator.getCurrentPopulation() |
Modifier and Type | Method and Description |
---|---|
private void |
MultithreadedPsdEvaluator.calculatePsdOfPopulation(Population p) |
double[] |
AbstractPsdEvaluator.evaluate(Population p) |
double[] |
AgHierarchyEvaluator.evaluate(Population p) |
double[] |
IEvaluation.evaluate(Population p) |
double[] |
MultithreadedPsdEvaluator.evaluate(Population p) |
void |
BasicEvaluator.evaluateAndOrder(Population p,
AbstractPsdEvaluator functionWithSimulation,
java.util.List<IEvaluation> functions)
Evaluate all the elements of the population with the list of given evaluators
after, it orders them from min to max error.
|
void |
IEvaluator.evaluateAndOrder(Population p,
AbstractPsdEvaluator functionWithSimulation,
java.util.List<IEvaluation> functions)
Evaluate all the elements of the population with the list of given evaluators.
|
void |
AbstractPsdEvaluator.setCurrentPopulation(Population currentPopulation) |
private void |
MultithreadedPsdEvaluator.storeSimulationTimes(Population p) |
Modifier and Type | Method and Description |
---|---|
void |
BgaBasedMutator.mutate(Population p,
java.util.List nonFixedGenes) |
void |
CrossoverMutator.mutate(Population p,
java.util.List nonFixedGenes) |
void |
IMutation.mutate(Population p,
java.util.List nonFixedGenes) |
Modifier and Type | Method and Description |
---|---|
Population |
AgInitialisator.createRandomPopulation(int populationSize)
Robust initialisation methods, it uses a logarithmic distribution of process rates, more
similar to what is expected from a real system.
|
Population |
AgReduced6Initialisator.createRandomPopulation(int populationSize)
Initialises all the rates between 1 and 1e12
|
Population |
AgReducedInitialisator.createRandomPopulation(int populationSize)
Initialises all the rates between 1 and 1e12
|
Population |
BasicGrowthInitialisator.createRandomPopulation(int populationSize)
Initialises all the rates between 1e-6 and 1e9.
|
Population |
IInitialisator.createRandomPopulation(int populationSize) |
Population |
SiInitialisator.createRandomPopulation(int populationSize)
Simplest way of initialisation, a pure random value.
|
Population |
AbstractInitialisator.createRandomPopulation(int populationSize,
int dimensions,
double min,
double max,
boolean log)
Initialises the population with random numbers, with linear or logarithmic distribution.
|
Population |
IInitialisator.createRandomPopulation(int populationSize,
int dimensions,
double min,
double max,
boolean log) |
Modifier and Type | Method and Description |
---|---|
Population |
DifferentialRecombination.recombinate(Population population,
IndividualGroup[] groups)
Creates a new offspring population.
|
Population |
IRecombination.recombinate(Population population,
IndividualGroup[] groups) |
Population |
RealRecombination.recombinate(Population population,
IndividualGroup[] groups)
Creates a new offspring population.
|
Modifier and Type | Method and Description |
---|---|
void |
DifferentialRecombination.initialise(Population population)
Initialises the first population and assigns values to sigma and xMean.
|
void |
IRecombination.initialise(Population population) |
void |
RealRecombination.initialise(Population population)
Does nothing
|
Population |
DifferentialRecombination.recombinate(Population population,
IndividualGroup[] groups)
Creates a new offspring population.
|
Population |
IRecombination.recombinate(Population population,
IndividualGroup[] groups) |
Population |
RealRecombination.recombinate(Population population,
IndividualGroup[] groups)
Creates a new offspring population.
|
Modifier and Type | Method and Description |
---|---|
Population |
ElitistAllReinsertion.Reinsert(Population origin,
Population offpring,
int substitutions)
The offspring individual is accepted if its error is lower than the corresponding original
error
|
Population |
ElitistReinsertion.Reinsert(Population origin,
Population offpring,
int substitutions) |
Population |
IReinsertion.Reinsert(Population origin,
Population offpring,
int substitutions) |
Modifier and Type | Method and Description |
---|---|
Population |
ElitistAllReinsertion.Reinsert(Population origin,
Population offpring,
int substitutions)
The offspring individual is accepted if its error is lower than the corresponding original
error
|
Population |
ElitistReinsertion.Reinsert(Population origin,
Population offpring,
int substitutions) |
Population |
IReinsertion.Reinsert(Population origin,
Population offpring,
int substitutions) |
Modifier and Type | Method and Description |
---|---|
void |
RestrictionOperator.apply(Population p) |
Modifier and Type | Method and Description |
---|---|
IndividualGroup[] |
ISelection.Select(Population p,
int groups) |
IndividualGroup[] |
RandomSelection.Select(Population p,
int groupCount) |
IndividualGroup[] |
RankingSelection.Select(Population p,
int groupCount) |
Modifier and Type | Method and Description |
---|---|
Population |
RichMatrix.toPopulation(int errorsNumber) |
Constructor and Description |
---|
RichMatrix(Population population) |