.. _publications: Publications using the hubbard package ====================================== This implementation of the `hubbard` package has been used in the listed publications below. #. J. Li, S. Sanz, M. Corso, D.J. Choi, D. Pena, T. Frederiksen and J.I. Pascual, *Single spin localization and manipulation in graphene open-shell nanostructures*, `Nature Communications 10, 200 (2019) `_ #. J. Li, S. Sanz, J. Castro-Esteban, M. Vilas-Varela, N. Friedrich, T. Frederiksen, D. Peña, J. I. Pascual, *Uncovering the Triplet Ground State of Triangular Graphene Nanoflakes Engineered with Atomic Precision on a Metal Surface*, `Phys. Rev. Lett. 124, 177201 (2020) `_ #. J. Li, S. Sanz, N. Merino-Díez, M. Vilas-Varela, A. Garcia-Lekue, M. Corso, D. G. de Oteyza, T. Frederiksen, D. Peña, and J. I. Pascual, *Topological phase transition in chiral graphene nanoribbons: from edge bands to end states* `Nature Communications 12, 5538 (2021) `_ #. J. Hieulle, S. Castro, N. Friedrich, A. Vegliante, F. Romero Lara, S. Sanz, D. Rey, M. Corso, T. Frederiksen, J. Ignacio Pascual, D. Peña, *On-Surface Synthesis and Collective Spin Excitations of a Triangulene-Based Nanostar* `Angewandte Chemie International Edition 60 (48), 25224-25229 (2021) `_ #. T. Wang, S. Sanz, J. Castro-Esteban, J. Lawrence, A. Berdonces-Layunta, M. S. G. Mohammed, M. Vilas-Varela, M. Corso, D. Peña, T. Frederiksen, and D. G. de Oteyza, *Magnetic Interactions Between Radical Pairs in Chiral Graphene Nanoribbons* `Nano Letters 22, 1, 164-171 (2022) `_ #. S. Sanz, N. Papior, G. Giedke, D. Sánchez-Portal, M. Brandbyge, T. Frederiksen, *A spin-polarizing electron beam splitter from crossed graphene nanoribbons* `Phys. Rev. Lett. 129, 037701 (2022) `_ #. S. Sanz, N. Papior, G. Giedke, D. Sánchez-Portal, M. Brandbyge, T. Frederiksen, *Mach--Zehnder-like interferometry with graphene nanoribbon networks* Submitted (2023) `J. Phys.: Condens. Matter 35 374001 (2023) `_ #. J. Brede, N. Merino-Díez, A. Berdonces, S. Sanz, A. Domínguez-Celorrio, J. Lobo-Checa, M. Vilas-Varela, D. Peña, T. Frederiksen, J. I. Pascual, D. G. de Oteyza, D. Serrate *Detecting the spin-polarization of edge states in graphene nanoribbons* Submitted (2023) `Nature Communications 14, 6677 (2023) `_ .. _citing: Citing the hubbard package ========================== If hubbard is used to produce scientific contributions please include citations, in addition to `sisl `_, to the following Zenodo DOI: .. code-block:: bash @misc{dipc_hubbard, author = {Sanz Wuhl, Sofia and Papior, Nick and Brandbyge, Mads and Frederiksen, Thomas}, title = {hubbard: v}, year = {2023}, doi = {10.5281/zenodo.4748765}, url = {https://doi.org/10.5281/zenodo.4748765} } and also to the following works: * For molecules/periodic structures .. code-block:: bash @Article{Li2019, author={Li, Jingcheng and Sanz, Sofia and Corso, Martina and Choi, Deung Jang and Pe{\~{n}}a, Diego and Frederiksen, Thomas and Pascual, Jose Ignacio}, title={Single spin localization and manipulation in graphene open-shell nanostructures}, journal={Nature Communications}, year={2019}, month={Jan}, day={14}, volume={10}, number={1}, pages={200}, issn={2041-1723}, doi={10.1038/s41467-018-08060-6}, url={https://doi.org/10.1038/s41467-018-08060-6} } and/or this .. code-block:: bash @article{Li2020, title = {Uncovering the Triplet Ground State of Triangular Graphene Nanoflakes Engineered with Atomic Precision on a Metal Surface}, author = {Li, Jingcheng and Sanz, Sofia and Castro-Esteban, Jesus and Vilas-Varela, Manuel and Friedrich, Niklas and Frederiksen, Thomas and Pe\~na, Diego and Pascual, Jose Ignacio}, journal = {Phys. Rev. Lett.}, volume = {124}, issue = {17}, pages = {177201}, numpages = {6}, year = {2020}, month = {Apr}, publisher = {American Physical Society}, doi = {10.1103/PhysRevLett.124.177201}, url = {https://link.aps.org/doi/10.1103/PhysRevLett.124.177201} } * For open boundary conditions: .. code-block:: bash @article{PhysRevLett.129.037701, title = {Spin-Polarizing Electron Beam Splitter from Crossed Graphene Nanoribbons}, author = {Sanz, Sofia and Papior, Nick and Giedke, G\'eza and S\'anchez-Portal, Daniel and Brandbyge, Mads and Frederiksen, Thomas}, journal = {Phys. Rev. Lett.}, volume = {129}, issue = {3}, pages = {037701}, numpages = {7}, year = {2022}, month = {Jul}, publisher = {American Physical Society}, doi = {10.1103/PhysRevLett.129.037701}, url = {https://link.aps.org/doi/10.1103/PhysRevLett.129.037701} } Related bibliography ==================== There are several works that have employed the Hubbard model in the mean-field approximation to study magnetic fingerprints in several graphene-based nanostructures (appart from those cited in the `publications`_ section). Here we list some of them: #. `J. Hubbard Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 276, No. 1365 The Royal Society 238-257 (1963) `_ #. `M. Fujita et al., J. Phys. Soc. Jpn. 65, 7, 1920-1923 (1996) `_ #. `J. Fernández-Rossier and J. J. Palacios Phys. Rev. Lett. 99, 177204 (2007) `_ #. `J. J. Palacios et al., Phys. Rev. B 77, 195428 (2008) `_ #. `F. Muñoz-Rojas et al., Phys. Rev. Lett. 102, 136810 (2009) `_ #. `K. Wakabayashi et al., Science and Technology of Advanced Materials 11, 5, 054504 (2010) `_ #. `Oleg V Yazyev Rep. Prog. Phys. 73 056501 (2010) `_ #. `Y. Hancock et al., Phys. Rev. B 81, 245402 (2010) `_ #. `S. Mishra et al., J. Am. Chem. Soc. 141, 27, 10621–10625 (2019) `_ #. `S. Mishra et al., Angewandte Chemie International Edition 59, 12041-12047 (2020) `_ #. `S. Mishra et al., Nature Nanotechnology 15, 22–28 (2020) `_